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ABSTRACT 

 

We introduce Kinetic Component Analysis (KCA), a state-space application that extracts the 

signal from a series of noisy measurements by applying a Kalman Filter on a Taylor expansion 

of a stochastic process. We show that KCA presents several advantages compared to other 

popular noise-reduction methods such as Fast Fourier Transform (FFT) or Locally Weighted 

Scatterplot Smoothing (LOWESS): First, KCA provides band estimates in addition to point 

estimates. Second, KCA further decomposes the signal in terms of three hidden components, 

which can be intuitively associated with position, velocity and acceleration. Third, KCA is more 

robust in forecasting applications. Fourth, KCA is a forward-looking state-space approach, 

resilient to structural changes. We believe that this type of decomposition is particularly useful in 

the analysis of trend-following, momentum and mean-reversion of financial prices. 

 

An instrument exhibits financial inertia when its price acceleration is not significantly greater 

than zero for long periods of time. Our empirical analysis of 19 of the most liquid futures 

worldwide confirms the presence of strong inertia across all asset classes. We also argue that 

KCA can be useful to market makers, liquidity providers and faders for the calculation of their 

trading ranges. 

 

 

Keywords: Kinetic Component Analysis, Time Series, Principal Component Analysis, 

LOWESS, Fourier Analysis, Kalman Filter. 
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1. INTRODUCTION 

Financial analysts and portfolio managers often describe price actions using classical mechanics 

terms such as momentum, oscillation, acceleration, resistance, mean-reversion, etc. Financial 

academics have researched and found evidence of these phenomena. In doing so, analysts, 

portfolio managers and academics evoke well-defined physical concepts. Since investors seem to 

find this analogy useful in characterizing the state of a market, we propose the formalization of 

this analysis. 

 

In this paper we introduce Kinetic Component Analysis (KCA), a state-space application that 

extracts the signal from a series of noisy measurements by applying a Kalman Filter on a Taylor 

expansion of a stochastic process. KCA presents the additional advantage that the signal is 

further decomposed in terms of three hidden components. These components can be intuitively 

associated with position, velocity and acceleration, hence KCA’s name. 

 

The idea of decomposing financial measurements into hidden components has found many 

applications. Principal Component Analysis (PCA) is used to model the dynamics of yield 

curves, by decomposing a series of rates changes into parallel shift, slope and curvature changes. 

Similarly, in this paper we show how to decompose a change in prices (or rates, volatilities, etc.) 

into position, velocity and acceleration. We believe that this new type of decomposition is 

particularly useful to the analysis of trend-following, momentum and mean-reverting financial 

prices. 

 

The rest of the paper is divided as follows: Section 2 discusses the literature and describes our 

goals and contributions. Section 3 presents our KCA method. Section 4 compares KCA with 

FFT. Section 5 compares KCA with LOWESS. Section 6 illustrates some of KCA’s applications. 

Section 7 lists our conclusions. 

 

 

2. LITERATURE REVIEW AND CONTRIBUTIONS 

2.1. FINANCIAL MOMENTUM 

De Bondt and Thaler [1985, 1987] was one of the first papers to argue that stock prices mean-

revert as a result of investors’ overreaction to new information. Their findings spurred a heated 

controversy, with some studies claiming that such mean-reversion is not a consequence of 

overreaction but the result of systematic risk of contrarian portfolios, size effects, liquidity 

effects and many other potential explanations. We refer the interested reader to Chan [1988], 

Ball and Kothari [1989], Zarowin [1990], Chopra et al. [1992], Jegadeesh [1990, 1992], 

Lehmann [1990], Lo and MacKinlay [1990], to cite only a few opinions on this subject. 

 

In contrast, there are a myriad of papers that argue that stock prices exhibit momentum and 

trend-following features, see Grinblatt and Titman [1989, 1991], Jegadeesh and Titman [1993, 

1999, 2002], Jarrow et al. [2003]. These views are not necessarily contradictive, since mean-

reversion and momentum may occur at different timeframes, however authors associate their 

claims with a wide range of timeframes. 

 

To add confusion, there is no agreement in the financial literature regarding how to define and 

measure these effects. Many studies define price momentum as a difference or a ratio between 
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two average prices computed over different time windows. For example, Jegadeesh and Titman 

[1993] reports that Value Line defines a stock price’s momentum as the ratio of the 10-week 

average price divided by the 52-week average price. Other studies measure momentum in terms 

of serial-correlation over various horizons (Moskowitz et al. [2010]). The range of values 

investigated for these variables seems rather arbitrary, and conclusions are likely to be sensitive 

to choosing different parameter combinations. This of course also raises the problem of backtest 

overfitting, or how representative are these conclusions out-of-sample (see Bailey et al. [2014a, 

2014b] on this important issue). 

 

2.2. FINANCIAL SIGNAL PROCESSING 

It is known that mathematicians and physicists have applied signal processing to betting 

problems for at least 50 years. Perhaps the earliest example is Claude Shannon, known as the 

“father of information theory,” who applied this knowledge to make a fortune in Las Vegas’ 

casinos. Ed Thorp and John L. Kelly (the discoverer of the Kelly Criterion for bet sizing), also 

successfully used information theory principles to beating casinos (Poundstone [2005]).  

 

In the context of investments, signal processing has also proven extremely successful. Elwyn 

Berlekamp, Kelly’s research assistant from 1960 to 1962, wrote the algorithms used by Axcom’s 

Medallion Fund. This fund is now managed by Renaissance Technologies (also known as 

RenTech), and has returned in excess of 30% average annual return over the last 20 years 

(Berlekamp [2005]). RenTech has been considered one of the most successful hedge funds in 

history (Lux [2000]). Although hedge funds are extremely secretive regarding their quantitative 

techniques, we may deduce the relevance of signal processing to RenTech by noting that the firm 

is currently managed by Peter Brown and Robert Mercer. These two scientists were recruited by 

RenTech because of the expertise in signal processing that they developed while working at 

IBM. In the words of Nick Patterson, a Renaissance researcher: “I realized that there are some 

deep technical links between speech recognition is done and some good ways of predicting the 

markets” (Patterson and Strasburg [2010]). 

 

Although it is evident that some of the most successful investors have used signal processing 

techniques, the number of publications dedicated to financial applications of signal processing is 

relatively small. The IEEE Signal Processing Society did not call for a Special Issue on Signal 

Processing Methods in Finance and Electronic Trading until as late as 2011. The issue was 

eventually published in August of 2012 (Volume 6, Number 4 of the IEEE Journal of Selected 

Topics in Signal Processing), and it dealt with a variety of issues such as the robust estimation of 

correlation matrices, an evaluation of the CAPM model, log-volatility estimation, modelling of 

transaction costs, Extreme Learning Machine, etc. 

 

2.3. CONTRIBUTIONS 

In this paper we make a number of contributions to the literature of financial signal processing. 

First, we introduce the KCA decomposition of a series of noisy measurements into three classical 

mechanics components: Position, Velocity and Acceleration. We show how a Kalman filter 

specified on the Taylor expansion of the series produces good point and confidence interval 

estimates. While engineers have used Kalman filters to track the movement of physical objects, 

we believe that this is the first study to use these techniques to decompose the dynamics of 

financial prices and analyze trend information. 
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Second, we introduce an algorithm that extracts the subsample of most significant FFT 

frequencies while controlling for overfitting. Third, we show that KCA delivers better and more 

insightful results than FFT, even when in the FFT-ideal scenario of fitting noisy measurements 

from a periodic signal. 

 

Fourth, we explain how KCA can be applied to determining the levels at which market makers 

should provide liquidity in order to avoid adverse selection, or what constitutes a similar 

application, at what levels prices could be faded. 

 

 

3. OUR MODEL 

We would like to decompose a financial instrument’s price dynamics in terms of three 

instantaneous components: Position, velocity and acceleration. These components are not 

directly observable, and measurements incorporate noise. We rely on a Kalman filter to model a 

state-space system of equations, where the matrices that characterize the system are derived from 

a Taylor expansion of the price dynamics.  

 

3.1. KINETIC DECOMPOSITION BY TAYLOR SERIES 

Let’s denote the observable price, or rate, or yield on which we focus by 𝑃(𝑡). We assume that 

the observed price is made up of a continuous and twice-differentiable latent component, p (t) —

which for reasons we explain below we refer to as the ‘fundamental component’ —, and a source 

of noise — for instance, Brownian shocks, ℎ(𝑡): 

 

 𝑃(𝑡) = 𝑝(𝑡) + ℎ(𝑡) (1) 
 

So, the observed price function, 𝑃(𝑡), inherits the non-differentiability from the noise 

component, ℎ(𝑡). We can, but need not, give the following interpretation to the latent 

fundamental component, 𝑝(𝑡): it is output of a (smooth) mapping from the ‘fundamental’ 

economic variables to the smooth component of the price. To give a stylized but illuminating 

example, let 𝑃𝑖(𝑡) be the observed i-maturity yields at time t. Let’s place ourselves in a world 

where central banks, which determine the short rate, follow strictly the Taylor rule. Let’s also 

assume, for the sake of argument, that the behavior of the economic variables (inflation, output, 

etc.) that enter the Taylor rule follow such processes that the resulting behavior of the short rate 

is mean-reverting (CIR or Vasicek-like). Then, in this universe, the yields of i-maturity bonds are 

a function of the reversion speed, reversion level and volatility of this process. In this stylized 

universe, the function 𝑝(𝑡) would then be the result of the smooth mapping (via the Taylor rule 

and the Vasicek/CIR-like ‘duration’ terms) from the macroeconomic variables (inflation, output, 

etc.) to smooth component of the observed prices, 𝑃(𝑡). With our procedure we endeavor to 

recover the latent function 𝑝(𝑡). We stress that our procedure does not rely on the actual 

existence of the mapping outlined above; nor does it rely on the correctness of the structural 

model, or on our ability to determine its parameters. We only offer an interpretation of our target 

latent function to aid intuition and facilitate an assessment of the plausibility of the results. 

 

Consider a price function in continuous time, where 𝑝(𝑡) represents the expected value of price 

at time t. We assume that 𝑝(𝑡) is twice differentiable with respect to time. The underlying 
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function may represent prices, log prices, rates, implied volatility, or any other form of asset 

value quotation. Its Taylor series up to a second degree is, centered around 𝑡0: 

 

 
𝑝(𝑡) = 𝑝(𝑡0) +

𝜕𝑝(𝑡)

𝜕𝑡
|

𝑡=𝑡0

(𝑡 − 𝑡0) +
1

2

𝜕2𝑝(𝑡)

𝜕𝑡2
|

𝑡=𝑡0

(𝑡 − 𝑡0)2

+ ∑
1

𝑛!

𝜕𝑛𝑝(𝑡)

𝜕𝑡𝑛
|

𝑡=𝑡0

(𝑡 − 𝑡0)𝑛

∞

𝑛=3

 

(2) 
 

 

For a 𝑡 value sufficiently close to 𝑡0, we can assume that ∑
1

𝑛!

𝜕𝑛𝑝(𝑡)

𝜕𝑡𝑛 |
𝑡=𝑡0

(𝑡 − 𝑡0)𝑛∞
𝑛=3 ≈ 0, hence 

 

 
𝑝(𝑡) ≈ 𝑝(𝑡0) +

𝜕𝑝(𝑡)

𝜕𝑡
|

𝑡=𝑡0

(𝑡 − 𝑡0) +
1

2

𝜕2𝑝(𝑡)

𝜕𝑡2
|

𝑡=𝑡0

(𝑡 − 𝑡0)2 
(3) 

 

 

Let us simplify this notation by renaming 𝑣(𝑡0) =
𝜕𝑝(𝑡)

𝜕𝑡
|

𝑡=𝑡0

 (analogous to p’s velocity) and 

𝑎(𝑡0) =
𝜕2𝑝(𝑡)

𝜕𝑡2 |
𝑡=𝑡0

 (analogous to p’s acceleration). We can discretize this function by setting 

ℎ = 𝑡 − 𝑡0, and sampling values at that fixed frequency. Then, Eq. (3) can be represented in 

discrete time as: 

 

 𝑝𝑠 ≈ 𝑝𝑠−1 + 𝑣𝑠−1ℎ +
1

2
𝑎𝑠−1ℎ2 

(4) 
 

 

with 𝑠 = 1, … , 𝑆 samples. This means that 𝑝𝑠 can be approximated by 𝑝𝑠−1, with an adjustment 

𝑣𝑠−1 linear in the time step ℎ and another linear adjustment 
1

2
𝑎𝑠−1 quadratic in ℎ. The 

approximation improves as h becomes smaller. Likewise, variable 𝑣𝑠 can be approximated 

through a Taylor series up to the first degree, since 𝑎(𝑡0) =
𝜕2𝑝(𝑡)

𝜕𝑡2 |
𝑡=𝑡0

=
𝜕𝑣(𝑡)

𝜕𝑡
|

𝑡=𝑡0

. The result is 

a discrete dynamic system characterized as: 

 

 𝑝𝑠 ≈ 𝑝𝑠−1 + 𝑣𝑠−1ℎ +
1

2
𝑎𝑠−1ℎ2 

𝑣𝑠 ≈ 𝑣𝑠−1 + 𝑎𝑠−1ℎ 

𝑎𝑠 ≈ 𝑎𝑠−1 

(5) 
 

 

Eq. (5) can be expanded to derivatives of any degree. In other words, there is no need to assume 

that acceleration is parsimonious (𝑎𝑠 ≈ 𝑎𝑠−1).  

 

3.2. KALMAN REPRESENTATION OF THE KINETIC DECOMPOSITION 

The system in Eq. (5) can be represented as a Kalman filter of the form: 

 

 𝑥𝑠 = 𝐴𝑥𝑠−1 + 𝐵𝑢𝑠−1 + 𝑤𝑠 

𝑧𝑠 = 𝐻𝑥𝑠 + 𝜀𝑠 

(6) 
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where 𝑥 ∈ ℜ𝑛 represents the system’s state, and 𝑧 ∈ ℜ𝑚 represents the measurement. Of course, 

the state is unobservable, hence the state-space characterization. The transition from state 𝑥𝑠−1 to 

state 𝑥𝑠 is modeled through matrix A, of order nxn. Random vector 𝑤𝑠 represents the process 

noise and is assumed to be distributed 𝑤𝑠~𝑁(0, 𝑄), where 𝑄 is the process noise covariance 

matrix, of order nxn. Random vector 𝑧𝑠 is the measurement, which results from a linear 

transformation of the state 𝑥𝑠, determined by mxn matrix H. Random vector 𝜀𝑠 is the 

measurement noise, which is assumed to be distributed 𝜀𝑠~𝑁(0, 𝑅), where 𝑅 is the measurement 

noise covariance, of order mxm. 

 

Matrix B has order nxl, and it relates the control input 𝑢𝑠−1 ∈ ℜ𝑙 to the state 𝑥𝑠. We discuss it in 

a separate paragraph because this component is optional. Systems where the observer has no 

possibility to influence the states do not require this component. However, if the observer’s 

actions can influence the states of the system, this B matrix would specify how the observer 

reacts to the system’s feedback. For example, this would be an interesting feature in the case of a 

large trader adjusting her aggressiveness in response to increased market impact. Another 

example would be how an energy company adjusts supply to respond to price oscillations, thus 

having some control on the prices. 

 

We need to specify H, A, Q and R to incorporate the features in our approach: 

 Matrix H has order mxn. In Section 3.1, 𝑥𝑠 ∈ ℜ3, because our system is characterized by 

three variables, {𝑝𝑠, 𝑣𝑠 , 𝑎𝑠}. However observation 𝑧𝑠 ∈ ℜ, hence (𝑚, 𝑛) = (1,3). In our 

model, observation 𝑧𝑠 can only be mapped to the first component of the state 𝑥𝑠. From 

this, we deduce that 𝐻 = [1 0 0]. 
 Matrix A has order nxn, which in our framework translates to 3x3. We can deduce its 

elements from Eq. (5), 𝐴 = [
1 ℎ

1

2
ℎ2

0 1 ℎ
0 0 1

]. 

 Matrix Q has order nxn, which in our framework translates to 3x3. Depending on the 

observations, the state components may or may not exhibit any cross-correlation. An EM 

algorithm can be used to determine the optimal value of Q. A possible seed could take the 

form 𝑄 = 𝑞𝐼𝑛, where 𝐼𝑛 is an identity matrix of order nxn, and q is real positive value. 

The greater q, the more likely we are to overfit, because we are indicating to the model 

that a greater proportion of the noise comes from the states rather than the measurements. 

So the researcher should try alternative values of q until she settles for one that delivers 

an output consistent with her knowledge of the system. In general, lower values of q 

should be preferred, in order to mitigate overfitting. 

 Matrix R has order mxm, which in our framework translates to 1x1, a real positive 

number. This value is the easiest to estimate by EM, since 𝑧𝑠 are directly observable. 

 

Once the problem has been fully characterized, we can apply standard Kalman Filter estimation 

algorithms to solve it. We refer the reader to Welch and Bishop [2006] and Brown and Hwang 

[1997] for a description of such algorithms. Appendix 1 provides the Python code that 

implements the KCA specification, generates estimates and delivers forecasts. 
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4. KCA vs. FFT 

The Fast Fourier Transform (FFT) is an algorithm that transforms a function of time into a 

function of frequency. It accomplishes that by approximating general functions as linear 

combinations of periodic functions. FFT is applied to functions in a similar way that PCA is 

applied to vector spaces. Analogously to the way PCA is used to extract the principal 

components of a vector space, we can use FFT to extract the principal frequencies that best 

describe the signal in a noisy measurement. 

 

One necessary caution with Fourier analysis is that it can extract noise as easily as it extracts 

signal. At the limit, if we use all the frequencies, we will perfectly fit noise.
1
 We must therefore 

come up with a criterion that determines what frequencies are truly relevant, and halts the 

extraction once additional model complexity does not provide significant additional explanatory 

power. Appendix 2 provides the Python implementation of one such procedure which we have 

devised for preventing FFT overfitting. At every iteration our algorithm scans all unused 

frequencies, looking for the one that delivers the greatest decrease on the residual’s Ljung-Box 

statistic. Our algorithm stops when the probability associated with the Ljung-Box statistic 

exceeds a given threshold (e.g., 5%), or the Ljung-Box decreases by less than a threshold, hence 

indicating the further model complexity is unwarranted. 

 

FFT has been considered “one of the most important numerical algorithms of our lifetime” 

(Strang [1994]). Since FFT is the standard signal extraction method in mathematics, science and 

engineering, it would be useful to evaluate KCA’s performance against FFT. In order to 

demonstrate KCA’s capabilities, we have chosen a time series where FFT is expected to perform 

well. Extracting a periodic signal from noisy measurements is a particularly trivial task for FFT, 

since it relies on periodic functions for fitting the data. Appendix 3 details the Python code that 

generates a sinusoidal sample, to which we have added Gaussian white noise. Figure 1 plots the 

states estimated by KCA, which are very close to the actual states used to generate the 

observations. 

 

[FIGURE 1 HERE] 

 

Figure 2 shows that FFT extracts a signal very similar to the first state component extracted by 

KCA. FFT signal extraction was halted once additional frequencies could not reduce the Ljung-

Box statistic by more than 5%, thus preventing overfitting. Note FFT’s departure around the 

edges of the series. This situation is called Gibbs’ phenomenon, and it is the consequence of 

attempting to fit piecewise continuously differentiable periodic functions around a jump 

discontinuity, and in particular around the beginning and end of the series. KCA is not affected 

by Gibbs’ phenomenon. However, we can appreciate that KCA fits the right edge better than the 

left edge. The reason is, Kalman filters’ estimates converge to the true values asymptotically, and 

it takes a few observations at the beginning of the series for that convergence to take place (a 

situation known as burn-in period in Bayesian filtering). This is not usually a problem, because 

researchers are almost always more interested on the right edge, for the purpose of forecasting. 

 

[FIGURE 2 HERE] 

 

                                                           
1
 A visual demonstration of FFT’s overfitting is available at: http://youtu.be/D8e3FcySitY  

http://youtu.be/D8e3FcySitY
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One important advantage of KCA over FFT is that the former provides estimates of the means as 

well as the standard deviations of the hidden states. Figure 3 plots the states estimates as well as 

the 2 standard deviation confidence intervals. 

 

[FIGURE 3 HERE] 

 

In summary, KCA presents three advantages over FFT: i) KCA provides point as well as 

confidence interval estimates of the signal’s position, while FFT only provides a point estimate. 

ii) beyond the position state, KCA also reveals information regarding the velocity and 

acceleration of the series (with confidence bands for the three of them). iii) KCA’s extracted 

signal is closer to the true signal at the extremes of the series, because KCA does not exhibit the 

Gibbs phenomenon. This third advantage is critical, because a researcher is typically interested 

in extrapolating or forecasting a signal, which requires that the most recent estimates are the 

most accurate. 

 

 

5. KCA vs. LOWESS 

Locally Weighted Scatterplot Smoothing (LOWESS) is another popular method used to deal 

with noisy measurements. LOWESS fits weighted linear regressions to localized subsets of the 

data in order to build a function that filters noise point by point (Cleveland [1979]). Figure 4 

plots the result of fitting several LOWESS functions to the same observations used in Section 4. 

When LOWESS is fit on local regressions that employ 50% of the data, the fit barely resembles 

the signal. A LOWESS function that uses 25% of the data gives a result similar to FFT’s. A 

LOWESS function of 10% is very close to KCA’s estimate. As the fraction of data is reduced, 

the LOWESS function fits the signal more closely, but unfortunately it also becomes more 

unstable. We can appreciate the onset of that phenomenon on the LOWESS(0.1) function, which 

exhibits several irregularities or bumps. 

 

[FIGURE 4 HERE] 

 

Figure 5 provides an example of a 20 step forward forecast performed by the KCA algorithm. 

KCA presents several advantages compared to LOWESS: i) LOWESS is not equipped to 

generate forecasts, because each estimate is highly dependent on the neighboring sample (before 

and after the observation). KCA incorporates a Kalman filter, thus inheriting the features of 

state-space signal processing methods. In particular, KCA is a forward-looking method that is 

robust to structural changes. ii) LOWESS requires a subsample to generate every single estimate, 

which makes it computationally intensive. Not only KCA can produce accurate forecasts several 

steps forward, but it can be updated online. This means that the last known state of the system is 

all KCA needs to forecast the next. iii) Like in the case of FFT, LOWESS does not decompose 

the signal into the three kinetic components, nor provides confidence intervals for those 

estimates. 

 

[FIGURE 5 HERE] 
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6. SOME APPLICATIONS 

6.1. FINANCIAL INERTIA 

As we mentioned in Section 2, the financial literature has debated for decades whether financial 

momentum exists. We have called this section “Financial Inertia” rather than “Financial 

Momentum” because we believe that the former is what the academic literature actually meant. 

In plain English, inertia is the tendency of an object to keep moving in a straight line at a 

constant speed. The principle of inertia is postulated in Newton’s First Law of Motion. In 

contrast, momentum is the product of mass and velocity. Newton’s Second Law tells us that it 

takes the same force to deviate an object at double speed with half mass or at half speed with 

double mass. Momentum requires the definition of mass and velocity, while inertia is merely the 

observation that an object’s velocity remains unaltered unless a force acts upon it.  

 

It is not the goal of this section to settle a long-standing controversy, but to demonstrate the use 

of KCA. We have studied the price dynamics of some of the most liquid investments across all 

asset classes. By applying KCA on price series, we can extract estimates of price acceleration. 

An instrument exhibits financial inertia when its price acceleration is not significantly greater 

than zero for long periods of time. 

 

Table 1 summarizes our data. Our source is level 1 tick data recorded by TickWrite. For each 

instrument we used the front contract, rolled forward by volume. Tick series were grouped in 

volume buckets, at an average of 1 bucket per day. KCA was then applied on the series of 

volume weighted average prices (VWAP) computed on each bucket. 

 

[TABLE 1 HERE] 

 

Table 2 lists the key inertia statistics per contract. Mean_Accel is the average value of the 

acceleration. Std_Accel is the standard deviation of the estimated acceleration values. Inertia is 

the proportion of acceleration estimates that did not exceed a 95% confidence bound centered 

around zero. This value can be interpreted as the proportion of market activity associated with 

insignificant acceleration. The greater the inertia, the greater was the amount of activity 

(measured as transacted volume) that occurred under a relatively unchanged price speed.  

 

[TABLE 2 HERE] 

 

Inertia results are generally high, with an average value of 0.8942 and a standard deviation of 

0.067. Corn (CN) registers the lowest reading, at 0.7615, and Euro FX (EC) the highest, at 1. Out 

of the 19 instruments studied, 9 exhibit an inertia greater than 0.9: Dollar Index (DX), Euro FX 

(EC), Natural Gas (NG), E-mini S&P500 (ES), XX (Eurostoxx 50), E-mini Dow-Jones (YM), 

Eurodollar (ED), T-Note 5 years (FV) and T-Note 2 years (TU). 

 

An intuitive result is given by futures on treasury notes, where the inertia is lower as the duration 

increases. As short term interest rates are anchored by the Federal Reserve’s policy, inertia 

gradually increases as we move away from the yield curve’s front end: From 0.9986 in the case 

of Eurodollar (ED), all the way to 0.8588 in the case of T-Bond 30 years (US). 
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In terms of average inertia per asset class, the highest average values seem to be associated with 

currencies (0.9540, although we only count with two examples) and rates/fixed income (0.9298). 

These are followed by equity indices (0.8963) and commodities (0.8425). 

 

Much has been published in recent financial outlets regarding the poor performance experienced 

by momentum or trend following funds. This contrasts with the above results, as they evidence 

strong inertia (the basis for the profitability of momentum funds). One possible explanation is the 

application of flawed trading rules to the monetization of existing momentum opportunities. A 

popular trading rule is called “crossing moving averages momentum”, and it consists in taking a 

long position on product X whenever the moving averages of sample sizes m and n satisfy the 

condition  �̅�𝑚 > �̅�𝑛, where 𝑚 < 𝑛. A short position would be triggered by �̅�𝑚 < �̅�𝑛. Since the 

sample size determines a limited number of parameter combinations that m and n can adopt, it is 

relatively easy to determine the pair (m,n) that maximizes the backtest’s performance. This sort 

of backtest overfitting has been shown to lead to negative performance in the presence of 

memory effects (Bailey et al. [2014a, 2014b]). Furthermore, let us not forget that “crossing 

moving averages” is an adaptive trading rule, in the sense that its estimates are purely historical 

and do not attempt to anticipate future behavior. That is not the case of KCA, which relies on 

Bayesian learning to update forward-looking priors. 

 

For these two reasons (overfitted and adaptive trading rules), it is not unreasonable to think that 

momentum funds can generate substantial losses even in the presence of strong momentum. A 

better approach may have been to invest in momentum opportunities by applying forward-

looking trading rules that are not so easily overfitted. 

 

6.2. MICROSTRUCTURAL NOISE 

Beyond the traditional study of financial momentum, KCA can be used in a variety of contexts. 

One such application is the modeling of price dynamics under microstructural noise. With the 

advent of High Frequency Trading, a large percentage of quotes are generated with no intention 

of actual trading. Also, trades often lead to positions that last barely a few seconds or even less. 

This microstructural noise makes it difficult to determine towards what levels prices are trending, 

and at what speed. 

 

Suppose that a market maker targets to hold inventory for a maximum period h, in chronological 

or volume time (see Easley et al. [2012b] for the difference). In Section 4 we demonstrated how 

KCA provides estimated means and confidence intervals for our three components. We can use 

these estimates to determine the levels at which market makers can provide liquidity. In 

particular, let 𝑝𝑠, 𝑣𝑠, 𝑎𝑠 be the lower bound estimates for position, velocity and acceleration, and 

𝑝
𝑠
, 𝑣𝑠, 𝑎𝑠 the respective upper bound estimates associated with a significance level 𝛼. For 

example, 𝑝𝑠 = 𝑝𝑠 + 𝑍𝛼𝜎𝑝,𝑠 and 𝑝
𝑠

= 𝑝𝑠 − 𝑍𝛼𝜎𝑝,𝑠, with analogous expressions for the other 

components. Then, we can apply the Taylor expansion in Section 3.1 to determine a confidence 

interval for 𝑝𝑠+1, at which liquidity can be provided 

 

 𝑝𝑠+1 ≈ 𝑝𝑠 + 𝑍𝛼𝜎𝑝,𝑠 + (𝑣𝑠 + 𝑍𝛼𝜎𝑣,𝑠)ℎ +
1

2
(𝑎𝑠 + 𝑍𝛼𝜎𝑎,𝑠)ℎ2 

𝑝
𝑠+1

≈ 𝑝𝑠 − 𝑍𝛼𝜎𝑝,𝑠 + (𝑣𝑠 − 𝑍𝛼𝜎𝑣,𝑠)ℎ +
1

2
(𝑎𝑠 − 𝑍𝛼𝜎𝑎,𝑠)ℎ2 

(7) 
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where 𝑍𝛼 < 0 for 𝛼 <
1

2
, hence the signs of the 𝑍𝛼 factors. The same approach is valid for traders 

who wish to fade market overreactions. The advantage of following this method compared to 

popular heuristics such as Bollinger Bands or range trading is that KCA is forward looking, 

while the former methods are backwards looking. This means that KCA responds much quicker 

to structural breaks, while Bollinger Bands will not respond for the duration of the sample length 

used to estimate historical means and standard deviations. KCA’s forward looking feature is due 

to the Bayesian Inference approach implicit in the Kalman filter. 

 

 

7. CONCLUSIONS 

Principal Component Analysis (PCA) derives what are the orthogonal components that explain 

most of the variance in a vector space. In a functional space, mathematicians, scientists and 

engineers have used the Fast Fourier Transform (FFT) to extract the principal frequencies that 

characterize a signal. These are valuable techniques that apply linear algebra and functional 

analysis to decompose a series into hidden components.  

 

In this paper we have introduced a new technique, called Kinetic Component Analysis (KCA), 

that computes a Kalman filter on a Taylor expansion of a series of noisy measurements. As a 

result, our approach belongs to the family of state-space, signal processing methods. The series is 

decomposed into classical mechanic components, position, velocity and acceleration. 

 

Several features make KCA preferable over other popular noise reduction procedures, such as 

FFT or LOWESS. First, KCA provides point as well as confidence interval estimates of the 

signal’s position. Second, beyond the position state, KCA also reveals information regarding the 

velocity and acceleration of the series (with confidence bands for the three of them). Third, KCA 

does not exhibit the Gibbs phenomenon. Fourth, KCA is forward-looking and resilient to 

structural changes. Fifth, KCA is updated online.  

 

An instrument exhibits financial inertia when its price acceleration is not significantly greater 

than zero for long periods of time. Our empirical analysis of 19 of the most liquid futures 

worldwide confirms the presence of strong inertia across all asset classes. Beyond providing 

robust estimates of financial momentum, KCA can be useful by market makers, liquidity 

providers and faders to determine their trading ranges. 
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APPENDICES 

 

 

A.1. PYTHON IMPLEMENTATION OF KCA 

Snippet 1 shows the implementation of KCA in Python. Dependencies consist of two libraries: 

numpy and pykalman. All Python libraries used in this paper are included in Enthought’s Canopy 

distribution.  
 

# by MLdP on 02/22/2014 <lopezdeprado@lbl.gov> 

# Kinetic Component Analysis 

import numpy as np 

from pykalman import KalmanFilter 

#------------------------------------------------------------------------------- 

def fitKCA(t,z,q,fwd=0):     

    ''' 

    Inputs: 

        t: Iterable with time indices 

        z: Iterable with measurements 

        q: Scalar that multiplies the seed states covariance 

        fwd: number of steps to forecast (optional, default=0) 

    Output: 

        x[0]: smoothed state means of position velocity and acceleration 

        x[1]: smoothed state covar of position velocity and acceleration 

    Dependencies: numpy, pykalman 

    ''' 

    #1) Set up matrices A,H and a seed for Q 

    h=(t[-1]-t[0])/t.shape[0] 

    A=np.array([[1,h,.5*h**2], 

                [0,1,h], 

                [0,0,1]]) 

    Q=q*np.eye(A.shape[0]) 

    #2) Apply the filter     

    kf=KalmanFilter(transition_matrices=A,transition_covariance=Q) 

    #3) EM estimates 

    kf=kf.em(z) 

    #4) Smooth 

    x_mean,x_covar=kf.smooth(z) 

    #5) Forecast 

    for fwd_ in range(fwd): 

        x_mean_,x_covar_=kf.filter_update(filtered_state_mean=x_mean[-1], \ 

            filtered_state_covariance=x_covar[-1]) 

        x_mean=np.append(x_mean,x_mean_.reshape(1,-1),axis=0) 

        x_covar_=np.expand_dims(x_covar_,axis=0) 

        x_covar=np.append(x_covar,x_covar_,axis=0) 

    #6) Std series 

    x_std=(x_covar[:,0,0]**.5).reshape(-1,1) 

    for i in range(1,x_covar.shape[1]): 

        x_std_=x_covar[:,i,i]**.5 

        x_std=np.append(x_std,x_std_.reshape(-1,1),axis=1) 

    return x_mean,x_std,x_covar 

Snippet 1 – KCA implementation 
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Function fitKCA has three arguments: t, z, and q. Numpy array t conveys the index of 

observations. Numpy array z passes the observations. Scalar q provides a seed value for 

initializing the EM estimation of the states covariance. Positive integer fwd determines the 

number of steps forward to be forecasted. This is an optional argument, with default value 0. 

 

 

A.2. FFT SIGNAL EXTRACTION WITH FREQUENCY SELECTION 

Snippet 2 shows the implementation a FFT signal extraction with frequency selection in Python. 

It relies on two popular Python libraries: numpy and statsmodels. The arguments are series and 

minAlpha. series is a numpy array containing the observation. minAlpha is an optional variable, 

with a default value of None. When a value is passed for minAlpha, this algorithm will select 

frequencies until one of two conditions is verified: 1) The Ljung-Box statistic is statistically 

significant beyond a probability minAlpha, or 2) the Ljung-Box statistic has decreased by less 

than a proportion minAlpha, indicating that additional model complexity is not justified in terms 

of greater explanatory power. 

 
# by MLdP on 02/20/2014 <lopezdeprado@lbl.gov> 

# FFT signal extraction with frequency selection 

import numpy as np 

import statsmodels.stats.diagnostic as sm3 

#--------------------------------------------------------- 

def selectFFT(series,minAlpha=None): 

    # Implements a forward algorithm for selecting FFT frequencies 

    #1) Initialize variables 

    series_=series 

    fftRes=np.fft.fft(series_,axis=0) 

    fftRes={i:j[0] for i,j in zip(range(fftRes.shape[0]),fftRes)} 

    fftOpt=np.zeros(series_.shape,dtype=complex) 

    lags,crit=int(12*(series_.shape[0]/100.)**.25),None 

    #2) Search forward 

    while True: 

        key,critOld=None,crit 

        for key_ in fftRes.keys(): 

            fftOpt[key_,0]=fftRes[key_] 

            series__=np.fft.ifft(fftOpt,axis=0) 

            series__=np.real(series__) 

            crit_=sm3.acorr_ljungbox(series_-series__,lags=lags) # test for the max # lags 

            crit_=crit_[0][-1],crit_[1][-1] 

            if crit==None or crit_[0]<crit[0]:crit,key=crit_,key_ 

            fftOpt[key_,0]=0 

        if key!=None: 

            fftOpt[key,0]=fftRes[key] 

            del fftRes[key] 

        else:break 

        if minAlpha!=None: 

            if crit[1]>minAlpha:break 

            if critOld!=None and crit[0]/critOld[0]>1-minAlpha:break 

    series_=np.fft.ifft(fftOpt,axis=0) 

    series_=np.real(series_) 

    out={'series':series_,'fft':fftOpt,'res':fftRes,'crit':crit} 

    return out 

Snippet 2 – FFT implementation 
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The output object out is a dictionary containing: 

 ‘series’: The extracted signal, as a double type numpy array. 

 ‘fft’: The selected frequencies, as a complex type numpy array. 

 ‘res’: A dictionary containing the unused frequencies. Frequencies not listed in this 

dictionary have been selected for signal extraction. 

 ‘crit’: The value of the Ljung-Box stat associated with the extracted signal. 

 

 

A.3. KCA vs. FFT 

Snippet 3 relies on the standard library numpy as well as the algorithms introduced in 

Appendices 1 and 2. Matplotlib is used for plotting the results. Function vsFFT carries out the 

following calculations. First, it generates a series of noisy measurements of a periodic function, 

which are stored in a numpy array z. Second, we apply KCA on z, obtaining estimates of the 

means and confidence intervals of the hidden states associated with position, velocity and 

acceleration. Second, we select the most relevant FFT frequencies that minimize the Ljung-Box 

statistic on the sample’s residuals. KCA and FFT’s results are then plotted for comparison. 

 
# by MLdP on 02/20/2014 <lopezdeprado@lbl.gov> 

# Kinetic Component Analysis of a periodic function 

import numpy as np,matplotlib.pyplot as pp,kca 

from selectFFT import selectFFT 

mainPath='../../'    

#--------------------------------------------------------- 

def getPeriodic(periods,nobs,scale,seed=0): 

    t=np.linspace(0,np.pi*periods/2.,nobs) 

    rnd=np.random.RandomState(seed) 

    signal=np.sin(t) 

    z=signal+scale*rnd.randn(nobs) 

    return t,signal,z 

#--------------------------------------------------------- 

def vsFFT(): 

    #1) Set parameters 

    nobs,periods=300,10 

    #2) Get Periodic noisy measurements 

    t,signal,z=getPeriodic(periods,nobs,scale=.5) 

    #3) Fit KCA 

    x_point,x_bands=kca.fitKCA(t,z,q=.001)[:2] 

    #4) Plot KCA's point estimates 

    color=['b','g','r'] 

    pp.plot(t,z,marker='x',linestyle='',label='measurements') 

    pp.plot(t,x_point[:,0],marker='o',linestyle='-',label='position', \ 

        color=color[0]) 

    pp.plot(t,x_point[:,1],marker='o',linestyle='-',label='velocity', \ 

        color=color[1]) 

    pp.plot(t,x_point[:,2],marker='o',linestyle='-',label='acceleration', \ 

        color=color[2]) 

    pp.legend(loc='lower left',prop={'size':8}) 

    pp.savefig(mainPath+'Data/test/Figure1.png') 

    #5) Plot KCA's confidence intervals (2 std) 

    for i in range(x_bands.shape[1]): 

        pp.plot(t,x_point[:,i]-2*x_bands[:,i],linestyle='-',color=color[i]) 
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        pp.plot(t,x_point[:,i]+2*x_bands[:,i],linestyle='-',color=color[i]) 

    pp.legend(loc='lower left',prop={'size':8}) 

    pp.savefig(mainPath+'Data/test/Figure2.png') 

    pp.clf();pp.close() # reset pylab 

    #6) Plot comparison with FFT 

    fft=selectFFT(z.reshape(-1,1),minAlpha=.05) 

    pp.plot(t,signal,marker='x',linestyle='',label='Signal') 

    pp.plot(t,x_point[:,0],marker='o',linestyle='-',label='KCA position') 

    pp.plot(t,fft['series'],marker='o',linestyle='-',label='FFT position') 

    pp.legend(loc='lower left',prop={'size':8}) 

    pp.savefig(mainPath+'Data/test/Figure3.png') 

    return 

Snippet 3 – KCA vs. FFT 

 

 

A.4. KCA vs. LOWESS 

Snippet 4 relies on the standard libraries numpy, statsmodels, as well as the algorithm introduced 

in Appendix 1. Matplotlib is used for plotting the results. We have omitted function getPeriodic 

for brevity, as that was listed in Snippet 3. 

 

Function vsLOWESS estimates a LOWESS on the same sample used in Appendix 3. The fraction 

of the sample used by each local regression is determined by frac.  We have tried three 

alternative values: .5, .25 and .1. KCA and LOWESS’ results are then plotted for comparison.  

 
# by MLdP on 02/20/2014 <lopezdeprado@lbl.gov> 

# Kinetic Component Analysis of a periodic function 

import numpy as np,matplotlib.pyplot as pp,kca 

import statsmodels.nonparametric.smoothers_lowess as sml 

mainPath='../../'    

#--------------------------------------------------------- 

def vsLOWESS(): 

    # by MLdP on 02/24/2014 <lopezdeprado@lbl.gov> 

    # Kinetic Component Analysis of a periodic function 

    #1) Set parameters 

    nobs,periods,frac=300,10,[.5,.25,.1] 

    #2) Get Periodic noisy measurements 

    t,signal,z=getPeriodic(periods,nobs,scale=.5) 

    #3) Fit KCA 

    x_point,x_bands=kca.fitKCA(t,z,q=.001)[:2] 

    #4) Plot comparison with LOWESS 

    pp.plot(t,z,marker='o',linestyle='',label='measurements') 

    pp.plot(t,signal,marker='x',linestyle='',label='Signal') 

    pp.plot(t,x_point[:,0],marker='o',linestyle='-',label='KCA position') 

    for frac_ in frac: 

        lowess=sml.lowess(z.flatten(),range(z.shape[0]),frac=frac_)[:,1].reshape(-1,1) 

        pp.plot(t,lowess,marker='o',linestyle='-',label='LOWESS('+str(frac_)+')') 

    pp.legend(loc='lower left',prop={'size':8}) 

    pp.savefig(mainPath+'Data/test/Figure4.png') 

    return 

Snippet 4 – KCA vs. LOWESS 
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TABLES 

 

 

 

 
Table 1 – Futures contracts used in our empirical analysis 

 

 

 
Table 2 – Inertia per futures contract  

SYMBOL DESCRIPTION EXCHANGE CLASS CURRENCY START END

DX Dollar index ICE ICE Currency USD 1/1/2007 8/1/2012

EC Euro FX CME Currency USD 1/1/2007 8/1/2012

DA Dax futures Eurex Equity EUR 1/1/2007 8/1/2012

DJ DJIA Futures CBOT Equity USD 1/1/2007 8/1/2012

ES S&P 500 E-mini CME Equity USD 1/1/2007 8/1/2012

NQ Nasdaq 100 CME Equity USD 1/1/2007 8/1/2012

XX EURO STOXX 50 Eurex Equity EUR 1/1/2007 8/1/2012

YM Dow Jones E-mini CBOT Equity USD 1/1/2007 8/1/2012

ED Eurodollar CME Interest rates USD 1/1/2007 8/1/2012

TU T-Note 2 yr CBOT Interest rates USD 1/1/2007 8/1/2012

FV T-Note 5 yr CBOT Interest rates USD 1/1/2007 8/1/2012

TY T-Note 10 yr CBOT Interest rates USD 1/1/2007 8/1/2012

US T-Bond 30 yr CBOT Interest rates USD 1/1/2007 8/1/2012

CL Light Crude NYMEX NYMEX Energy USD 1/1/2007 8/1/2012

NG Natural Gas NYMEX Energy USD 1/1/2007 8/1/2012

CN Corn CBOT Grain USD 1/1/2007 8/1/2012

LH Lean Hogs CME Meal USD 1/1/2007 8/1/2012

GC Gold Comex COMEX Metal USD 1/1/2007 8/1/2012

CT Cotton #2 ICE Softs USD 1/1/2007 8/1/2012

SYMBOL DESCRIPTION MEAN_ACCEL STD_ACCEL INERTIA

DX Dollar index ICE -6.35E-05 4.27E-02 0.9080

EC Euro FX 5.06E-06 1.43E-03 1.0000

DA Dax futures -4.25E-01 6.94E+00 0.8627

DJ DJIA Futures -7.71E-01 1.25E+01 0.8926

ES S&P 500 E-mini -8.91E-02 1.33E+00 0.9148

NQ Nasdaq 100 -1.21E-01 1.97E+00 0.8630

XX EURO STOXX 50 -2.51E-01 3.92E+00 0.9224

YM Dow Jones E-mini -7.80E-01 1.20E+01 0.9224

ED Eurodollar 2.51E-05 7.41E-03 0.9986

TU T-Note 2 yr -3.94E-05 1.19E-02 0.9875

FV T-Note 5 yr -2.85E-04 2.81E-02 0.9223

TY T-Note 10 yr -5.95E-04 3.76E-02 0.8815

US T-Bond 30 yr -1.32E-03 5.38E-02 0.8588

CL Light Crude NYMEX -2.63E-04 8.60E-02 0.8162

NG Natural Gas 1.05E-05 1.60E-02 0.9754

CN Corn -2.48E-02 7.43E-01 0.7615

LH Lean Hogs -2.39E-03 9.43E-02 0.8182

GC Gold Comex -3.30E-02 6.72E-01 0.8143

CT Cotton #2 -3.17E-04 9.40E-02 0.8694
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FIGURES 

 

 

 

 
Figure 1 – KCA’s estimated mean states 
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Figure 2 – KCA’s means states with confidence intervals 
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Figure 3 - KCA vs. FFT 
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Figure 4 - KCA vs. LOWESS 
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Figure 5 - KCA forecasts, 20 steps forward 
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